14 research outputs found

    14 Examples of How LLMs Can Transform Materials Science and Chemistry: A Reflection on a Large Language Model Hackathon

    Full text link
    Chemistry and materials science are complex. Recently, there have been great successes in addressing this complexity using data-driven or computational techniques. Yet, the necessity of input structured in very specific forms and the fact that there is an ever-growing number of tools creates usability and accessibility challenges. Coupled with the reality that much data in these disciplines is unstructured, the effectiveness of these tools is limited. Motivated by recent works that indicated that large language models (LLMs) might help address some of these issues, we organized a hackathon event on the applications of LLMs in chemistry, materials science, and beyond. This article chronicles the projects built as part of this hackathon. Participants employed LLMs for various applications, including predicting properties of molecules and materials, designing novel interfaces for tools, extracting knowledge from unstructured data, and developing new educational applications. The diverse topics and the fact that working prototypes could be generated in less than two days highlight that LLMs will profoundly impact the future of our fields. The rich collection of ideas and projects also indicates that the applications of LLMs are not limited to materials science and chemistry but offer potential benefits to a wide range of scientific disciplines

    Hybrid Quantum-Classical Eigensolver without Variation or Parametric Gates

    No full text
    The use of near-term quantum devices that lack quantum error correction, for addressing quantum chemistry and physics problems, requires hybrid quantum-classical algorithms and techniques. Here, we present a process for obtaining the eigenenergy spectrum of electronic quantum systems. This is achieved by projecting the Hamiltonian of a quantum system onto a limited effective Hilbert space specified by a set of computational bases. From this projection, an effective Hamiltonian is obtained. Furthermore, a process for preparing short depth quantum circuits to measure the corresponding diagonal and off-diagonal terms of the effective Hamiltonian is given, whereby quantum entanglement and ancilla qubits are used. The effective Hamiltonian is then diagonalized on a classical computer using numerical algorithms to obtain the eigenvalues. The use case of this approach is demonstrated for ground state and excited states of BeH2 and LiH molecules, and the density of states, which agrees well with exact solutions. Additionally, hardware demonstration is presented using IBM quantum devices for H2 molecule

    Agent-to-Simulant Relationships for Vapor Emission from Absorbing Materials

    No full text
    When using a simulant to predict the behavior of a chemical warfare agent (CWA), it is not always possible to sufficiently match all relevant properties, and the use of an agent-to-simulant relationship is required. The objective of the agent-to-simulant relationship developed here is to enable the prediction of vapor emission rate of a CWA from a polymer given an experimental measurement of the vapor emission rate of a simulant from the polymer. Vapor emission experiments for the CWA sulfur mustard (HD) and the simulants methyl salicylate (MeS) and 2-chloroethyl ethyl sulfide (CEES) absorbed in the polymers silicone and polydimethylsiloxane (PDMS) were carried out to verify the theoretical predictions. It was found that the agent-to-simulant relationship holds if the initial dimensionless concentration distributions and Biot numbers in the polymer are similar for the agent and simulant. The mathematical agent-to-simulant relationship also provides guidance on the critical properties to match in simulant selection

    A molecular dynamics study of the role of molecular water on the structure and mechanics of amorphous geopolymer binders

    No full text
    In this paper, molecular dynamics simulations are used to study the effect of molecular water and composition (Si/Al ratio) on the structure and mechanical properties of fully polymerized amorphous sodium aluminosilicate geopolymer binders. The X-ray pair distribution function for the simulated geopolymer binder phase showed good agreement with the experimentally determined structure in terms of bond lengths of the various atomic pairs. The elastic constants and ultimate tensile strength of the geopolymer binders were calculated as a function of water content and Si/Al ratio; while increasing the Si/Al ratio from one to three led to an increase in the respective values of the elastic stiffness and tensile strength, for a given Si/Al ratio, increasing the water content decreased the stiffness and strength of the binder phase. An atomic-scale analysis showed a direct correlation between water content and diffusion of alkali ions, resulting in the weakening of the AlO4 tetrahedral structure due to the migration of charge balancing alkali ions away from the tetrahedra, ultimately leading to failure. In the presence of water molecules, the diffusion behavior of alkali cations was found to be particularly anomalous, showing dynamic heterogeneity. This paper, for the first time, proves the efficacy of atomistic simulations for understanding the effect of water in geopolymer binders and can thus serve as a useful design tool for optimizing composition of geopolymers with improved mechanical properties. Published by AIP Publishing.Full Published Online: October 2016; 12 month embargo.This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    Solvent-Assisted Desorption of 2,5-Lutidine from Polyurethane Films

    No full text
    A fundamental understanding of chemical interactions and transport mechanisms that result from introducing multiple chemical species into a polymer plays a key role in the development and optimization of membranes, coatings, and decontamination formulations. In this study, we explore the solvent-assisted desorption of a penetrant (2,5-lutidine) in polyurethane with aprotic (acetonitrile) and protic (methanol) solvents. Chemical interactions between solvent, penetrant, and polymer functional groups are characterized via time-resolved Fourier transform infrared spectroscopy (FTIR) during single and multicomponent exposures. For both solvents, an increase in the extraction rate of the penetrant is observed when the solvent is applied during desorption. Inspection of the FTIR spectra reveals two potential mechanisms that facilitate the enhanced desorption rate: (1) penetrant/solvent competition for hydrogen donor groups on the polymer backbone and (2) disruption of the self-interaction (cohesive forces) between neighboring polymer chains. Finally, the aprotic solvent is found to generate an order of magnitude greater desorption rate of the penetrant, which is attributed to a greater disruption of the self-interaction during penetrant desorption compared to the protic solvent and the inability of an aprotic solvent to form larger and potentially slower penetrant–solvent complexes
    corecore